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ABSTRACT. Vector algebra and "local" coordinate
systems on the celestial sphere are used to derive
exact equations for computing the new mean place of a
star after motion of the star. New rigorous matrix
expressions are given for transforming proper motion
components and radial velocities from one epoch of
observation to another, taking into consideration the
corresponding changes in epoch of orientation.

1. Introduction

Given «, and &,, the right ascension and
declination of a star at time t;, the associated unit
vector of direction cosines pointing to the star, in a
certain inertial (X,Y,2Z) reference frame at epoch t;,
is given by
cosdy cosa,
¥, =< cosfgsingy ) . (1.1)
sind,

The first problem considered here is simply that of
computing the vector of direction cosines il, at
another time t;, pointing to the new position of the
gtar after it has moved with constant velocity along a
straight line in space from point A at t, to point B
at t,. Figure 1 shows the basic triangle formed by A,
B, and the observer 0, and labels various vectors used
later. If needed, &, and &, are recoverable from 21-
For the purpose of this work, the observer is assumed
fixed with respect to the baricenter of the solar
system. That is, only the contribution of the motion
of the star to the mean place is considered; excluding
the contribution of parallax and aberration. The
curvilinear components of velocity at time t,, u“o and
psu are assumed known. Exact star position reductions
also require the radial velocity V and distance r
(actually only v = V/r is needed), in eorder to

completely  specify the orientation of the star’s
path in space. As is ordinarily necessary, r will be

expressed in terms of the annual parallax L.

Schlesinger [1917] was the first to discuss
the importance of radial wvelocities in the reduction
of star positions. Many classical textbooks on
spherical astronomy after him neglect V and I in
corrections for proper motion. Smart [1956, p.249],
the paper by Kustaanheimo [1960] and Woolard and
Clemence [1966, p.307] all include approximate
formulas in slightly different forms to obtain the
first-time derivatives of the components of proper
motion, incorporating radial velocity effects. Scott
and Hughes [1964] implemented these approximations in
their second-order matrix expansion of X, in t
(=t,-t,). A somewhat different matrix formulation
using basically the same assumptions was presented by
Mueller [1969, p.114] and Murray [1983, p.54]. In
[Eichhorn and Rust, 1970], [Eichhorn, 1974, p.22],
[Taff, 1981, p.37] and [Eichhorn, 1982] a rigorous
algebraic approach based on the time derivatives of
the star's original position vector is followed.
Recent editions of the Astronomical. Almanac [e.g.,
Astronomical Almanac, 1984, p.B36] give without proof
or reference, a succint statement of an exact vector
algorithm for computing 21. Green [1985, p.265]
arrives at similar results based on the numerical
normalization of a vector. Finally Stumpff [1985]
expanded Schlesinger's ideas and incorporated special
relativistic effects. None of the above authors
except Eichhorn and Rust [1970] and later Eichhorn
[1974, p.84]

proper motion components between epochs.

included equations for transforming

An alternative geometric approach exclusively
dependent on the notien of rotation matrices and
"local" coordinate frames is presented here. The
equivalence with some of the conventional proper

motion equations is then established.
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Fig. 1 -~ Vector relationships on the observer and

-+
velocity v plane.
2. The problem of proper motion

It is seen from Fig. 1 that the pesition vector
of a star at time t, can be written

fl = QQ Fev . (2.1)

Introduce the unit vectors in and il along the

3 23 3 2
directions X; and X; respectively, then since in

general

% = X/ (2.2)
where

%=, Ht, (543
so that,

& =%, /x, (2.4)
and

%, =X, /1y, (2.5)

where r, and r; denote {igi and i?ll respectively.

The unit vector fn tangent to the projection of
the star path on the celestial sphere can be expressed
as follows (see Fig. 2)

in = sini, T 4+ cosiy, T (2.6)

s ] 8y
where Iﬂ and T

8
a o
the celestial sphere along the parallel of declinatiomn

are unit vectors tangent at A to

6, and the meridian of right ascension ¢4

respectively. Thus (ﬁu,fa ,T. ) represents a
(1]

]
[
right-handed local Cartesian frame at point (e;,6,)

and they form an orthonormal basis. See Fig. 3.

The wunit vectors T and T may be
@y 8y
conveniently obtained from
. —-sing,
L cosl cosé, = T cosé (2.7)
dayg o 0 o o .
0

and

4]

A‘l’o‘ 30)

[

le puucussb

Fig. 2 - Proper motion components in right ascension

and declination.

R -sind,cost,
B e L, F bl sinegg » . (2.8)
8, _ dé, 0
cosé,

It can be seen from Fig. 2 that

n _coséy
sing, = —2—— (2.:9)
Ho
and
s
cosfy = —* (2.10)
Mo
with
_ RPNt 2.11
o [(ua;:osso) + u%] ¢ )

Using the above expressions in (2.6) the value of L2

can be given explicitly by

-sing, -sinéd, cose,
uacosﬁn W
T, = ” costy » + ;—” -sinéy sine; p. (2.12)
o 0
0 coséy

The veloeity vector 3 in equation (2.1) may
also be expressed as (see Fig. 1)

Ve=RrR% +THE . (2.13)

The velocity's tangential component at time t,
can be written as a function of the angular velocity
Yo and the distance r;, namely

T =ty - (2.14)

After substituting (2.14), (2.13) and (2.4) in
(2.1), (2.1) becomes

Romxp % + t(R %, + merp T) s (2.15)
or

X, = (r+Rt) Xy + wprpt Ty - (2.16)
Consequently

I§;I = [(ry+RE)? + (p,r,t)’]% s (2.17)
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Fig. 3 - Local coordinate aystéms on the celestial

sphere at time of orientation 7, and T,.

Finally, introducing (2.16) and (2.17) into (2.5)
we obtain a rigorous equation for computing ¥, as a
function of ﬁo and other alréady'known or derivable

parameters

Ly tRt ﬁg + BRaZpt % ?a ]
[(rp+RE)Z+ (o £) 2 1F

%= . 7
[(rp +RE)Z+(yy 5 £) 2]
(2.18)
The value of the radial velocity V is generally
given in Km/sec measured poéitively away from the
observer. The unit of time t = t,-t; is normally
expressed in years. Thus in order to make the units
consistent in equation (2.18) we must use for the
radial component of 3 at t,
‘R=Vn (2.19)
where n is the number of seconds per year.
The distance r, at t, required in equation (2.18)
is not directly observed or gi#en in catalogues, but

may be computed (in Km) using

a

tg & ﬁ; - (2.20)
where a is the semimajor axis of the earth's orbit
expressed in Km, Il is the annual parallax of the star
expressed in seconds of arc, and ¢ is the number of

radians per second (2 sin 1").

3. Comparison with previously published results
and final matrix form

Note that equation (2.18) can also be written

¥, = cosoX, +sincd, {3:1)
where ¢ is the central angle at O between A and B (see
Fig. 1).

Substituting (2.6) into (3.1) we have

%, = cosaﬁn+sin0(sin¢ufun+cos¢nT60), (3.2)
or in matrix form
Ccosd
e f% s f"sa ] j singsini,
singcesi,
cosd,cose, —-sing, —-sindjcosey cosg
=} cosdysing, cost, —sindysing, sinogsind, 2,
sind, 0 cosdy singcosly
(3.3)

This equation can be viewed as a transformation of the
components of the unit wvector X, given in a
coordinate system parallel at O to the local
(io,fun,fsu} frame, to the inertial frame (X,Y,Z)
at time t;.

Notice that the matrix of this transformation is
just

R= Ry (-0 )R, (8;) - (3.4)

We may alternatively choose a different ordering
for the local triad. For example, if we select a
different right-handed local coordinate frame such as

(-f6 ,f@ ,ﬁn), equations (3.3) can be rewritten as
o '}

-sinocosil,
X, =[-T i T $ ¥ ] sinosind
1 60 'R Xu o
cosg
sind, cosq, —sing, cosd;costy | (-sinocosi,
= sindy singy costy cosdy sing, sinosiny,
—cosdy 0 sind, coso
-
-singcosi,
= Ry (=g IR, (8,-3m) sinosini, . (3.5)

cosa
This is the form presented without proof in
[Mueller, 1969, p.115], except that when substitution
for the value of ¢ is made, some simplifications are
introduced.
Comparing equations (2.18) and (3.1), it follows

that
sy & MaTopt @ Mo €
[ (xy +RE)2+(yy r.,t)Z]% Ty )2+ (yy )21}
(3.6)
and
rptRE 1+, ¢
cosg = T = 1
[(rp+RE)Z+(py o £)2 1% [(14vg t)=+(p‘_, t)?]
(3.7)
where
v, = Rig, = Vallp/a . {3.8)

Substituting equations (3.6) and (3.7) into (3.1)



we obtain
%, = 1 ; {4y, ©)%, 4 tT, ) (3.9)
[(I+v )24 (pyt) 2]

or making use of (2.12)

~ 1

S ] {(1+\lnt)}(u+umacosﬁnt1'au+u5;:'rau}.

[(14+vyt)2+(y,t)?]

(3.10)
Essentially this equation is the one described in
the Astronomical Almanac [e.g., 1984, p.B36]. Notice
that although the denominator on the right hand side
of the equation is the length of the vector it
divides, nevertheless it does not depend on the
coordinates (“0:50) of the star at t;. The only
parameters involved in the computation of this length
are related to the proper mction of the star itself;
consequently stars with the same proper motion, radial
velocity and parallax will have the same denominator
in (3.10). This fact is not made clear by the
normalization process in the Astronomical Almanac,
where the whole vector between braces on the right of
(3.10) is normalized. Similar numerical normalization
is suggested by Green [1985, p.265] to the vector on
the right-hand side of equation (3.9) to determine
¥, . Equations (3.9) or (3.10) are rigorous analytical
expressions for computing the fFmtrinsic proper motion
(nutation and precession from ty to t, are neglected
at this time) of stars; however we may look for
simpler alternatives.
From (2.17) and (3.8) it immediately follows that
rgfry = [(I+yt)2 + (pot)z}'% 1 (3.11)

Therefore equation (3.10) can also be written as

1+ty,
X OEL% ¢ fa : Ta Iy /)8 tu, cosdyp (3.12)
0 0 0
t""‘o
or recalling (3.3) and (3.4)
l+tv,
)?1 =R (/) tp  cosd, ) = R,)?l {3.13)
Gp o
tpau

where ﬁl is the unit vector il expressed on the
(]

local coordinate system at time t;, namely

i -+ +
¥y = X%:’!X%! (3.14)
where
1+tv,
=Y
K1;D =1, tpaucosﬁo (3.15)
ty
8

and clearly
2 >
IX;LG! = %] = 1. (3.16)
Equation (3.13) gives in compact matrix form a

conceptually simple but rigorous expression to obtain
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the effect of intrinsic proper motion on any stellar
object. An equivalent matrix expression determined
using a completely independent algebraic approach was

already given by Eichhorn [1982].

4. Proper motion components at epoch t, in terms
of the quantities at epoch t,

In this section we will obtain the angular
components of velocity in right ascension pucosﬁl,

1
as well as the radial velocity

declination u‘sl
parameter v; (=R, /r,) at epoch t; as a function of the
assumed known velocity components uancoséo, 116“, and
vy, (=R/r,, eq. (3.8))

reduces to the computation of the components of the

at epoch t;. The problem

- P s
velocity vector v in the local (xl’ra ’IG)
1 1
coordinate frame at t,.
From equation (2.1) or Fig. 1,
-+ 3 3
v (XKt . (4.1)
+ 2 3 ;
In this equation v, X;, and X; are all in
the same arbitrary coordinate system. In particular
this is taken to be the (X,Y,2) inertial frame at
some epoch. We will need to identify the epoch of this
frame, a function of time because of nutation and
precession. Thus we write,
> 3> 2 > 2 2
- 3 = (X, - : 4.2
o, Tem S g, Fag,)/ (4.2)
The subscript ‘ti's identify the epoch of
orientation of the inertial coordinate system in which
the component of the vector is expressed. Incidentally
we must also have a subindex in order to properly
identify the epoch of the system to which the
curvilinear (equatorial) coordinates are referred,
€:Bay (anyﬁu) v (qlaﬁl) 3 (a]vsg) , etc. The
To To T
subindices will be omitted when they are clear by the
context.
-
and v the wvelocity wvector
xu h 2 7 e
(components) expressed in the local (X@,Tau,rs )T
o To
and {Xi,Ta ,Ts )t systems at epoch of place t, and
1 1 T

t, respectively but defined through the curvilinear

_)
Denote by v

lines (hour circles and circles of declination) of the
inertial systems at 1, and T, (see Fig. 3). Notice
that in general ty # T4 for i = 0,1. Then the
velocity components in radians, or as proportional

parts of the distance, are given by

v Yy
> -+
cosé,p = v,  [r, and 1L cosbyp=v, frg.
llm1 1 i 1 ' o |
Y5, Y5,

(4.3)
Also, (compare equations (3.3) and (3.4)),

- - >
vo= Ry (=8 R(ey) v_ 3 v
0 To

-+
3 5 R,(-6,)R,(e,) Ve (4.4)

8
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Since

%, =k, 2;1 = (N)[P] 2, 4.3
where [P] and [N] are respectively the orthogonal
precession (from t, to T,;) and nutation (at T,)
matrices as given fér example in [Mueller, 1969, p.65
and 75]}. Recall that [N] is the unit matrix when

transforming between mean coordinate systems or

places.
As expected it follows from (4.2) and (4.5) that
7, = el Y, (4.6)

and thus from (4.3) and (4.4), that

vy Vo

B cosd, p = (r,/r;)[&] K coséy (4.7)
o %

ual Pao

where [®] is a convenient short designation for an

_orthogonal matrix given by
[£] = Ry(-68,)R;(a,) [N][P]R; ()R, (8,). (4.8)

Equation (4.7) solves the stated problem of this
section in principle, since from (3.11) x,/r; is known
and 21

T1
yields (“1!51)t
1
and 8§, at t; with respect to the frame (X,Y,Z}t are
1

from equation (3.13) and equation (3.4)

needed to compute [X£]. That is, a

found from

cosf;cose, 1+tv,

iat = (cosd, sine, p =(r, /1y ) [N][P]R¢tp cosdy p. (4.9)°
! 0

sind tpe
1 60

Equations (4.7) and (4.8) in comjunction with’

(4.9) define a rigorous straightforward updating of
proper motion components that has much to recommend it
for actual numerical computations. Recall that the
above eqﬁations involve epochs of orientation

T,, i=1,0 and place ti' i=1,0. In a sense they are

i
more general that other matrix expressions ;ecently

introduced aséuming ti=Ii and invelving

transformations between mean epochs.
[Standish, 1982; Aoki et al., 1983; Astromomical
Almanac, 1984, p.X]. Notice that equation (4.7) is the
transformation of the components of proper motion with
respect to the local coordinate system at (u‘,,su)t to
the local coordinate system with origin at (al,al}tl.
This transformation is easily visualized through
rotation matrices assuming all coordinate systems
located at the origin of the celestial sphere. (See
Fig. 3). The matrix of the transformation is precisely
equation (4.8). )

Noticing that (see the left-hand equality in

Gonsitlt

equation (4.9); a similar egquation holds for iot )
o

1
ilTl = Ra(—a:)Rz(ﬁl)‘ 0 (4.10)

0

equation (4.9) can be written

1 1+tv,

0 = (/) 4] tu%cosﬁ0 (4.11)

0 tnae
Observe that taking the norm of both sides of (4.11),
using equation (2.11), vyields an alternative

derivation of (3.11). Furthermore, denoting the first
column of [E]t-by'gl, from (4.11), multiplying both
sides by [Ji‘]t‘ we find
) I+tv, )
31 = (r, /xy) T cossn = ﬁlﬁn' (4.12)
t}ia
The first row of [£] is the vector (pl) . Using

this fact in equatxon (4.7) allows us to solve for the

first (radial) component v,

1+t t Vg
vy = {rpfry)®’ thy cdsén u, cosé, (£.13)
: o
t“a s,
Expanding and using (2. 11) and (3. 11), this becomes
vy = [vy + (Vi+ud)el/[(1+v,t)E + pfe?]. (4.14)

This equation was independently derived in [Eichhorn
and Rust; 1970] or [Eichhorn, 1974, p.84].
From {4.7) and the orthogonality of [4]

TvE o pd o= (Vi) /[ (14vge)? + pdt?]. (4-15)
‘Substituting for v, from (4.14) yields °
iy = g /(140 £) 7+ uEd] (4.16)

Equations (4.14), (4.15) and (4.16) hold without
neglect of p.recession and nutation. i;c:'comés as no
surprise to find that v, and p, are not affected by
the change in orientation of the local coordinate
system at T, introduced by [N][P]. The comﬁonent v, is

measured along theé normal to the "celestial sphere,

and therefore is invariant with respect to a rotation

of coordinates on the sphere. j, is the magnitude of
the tangential velocity vector, which is independent
of the particular local coordinate system in which the

tangent plane coordinates of this vector are

expressed.

The remaining two components at t,, the
projections of the wvelocity vector on the unit-tangent

vectors along the (ul,ﬁl)t lines, uacosﬁl and p

are dependent on the inertial coordiﬁate frame a;n'
which o, and §, are expressed, hence dependent on
[N(1,)] and [P(1,,7,)].

Explicit walues of @, and §; at 1; were given in
[Eichhorn and Rust, 1970] and [Eichhorn, 1974, p.221.

They may be computed using equations (2.18) or (3.13);



also from (4.9) after assuming [N][P]=I. For the sake

of completeness these values are written below
tand, = [(1+vyt)tand,+y t]/(A*mftf)’} (4.17)
To 8 ]

tan(altn—aoJ = pa:fﬁ (4.18)
where
A=l4vg t-p . tanfpt (4.19)
o
To clarify this point, let's obtain the
components of proper motion at t; and 1, from the

components of proper motion at t; and 1; as follows

¥ V1
ualcosal = (rufrl)[R]RfR,(-alto)Rz(Bltn) palcosﬁl .
uﬁ! Ty Hai T

Notice that from (3.4) and (4.8)

[RIRE = R, (=8,)R, (o, )[N][P]
While the walues (al,ﬁl)t above are given by
equations (4.17) to (4.19) the equatorial coordinates
(o, ,8,) refer to the inertial frame at 1, and should
be computed from equation (4.9). The subindices 1, and
t, attached to the proper motion components in
equation (4.20) are needed to stress the difference in
epoch of orientation although they refer to the same

epoch of observation.

From equation (4.11) it easily follows that

Vg 1 1
w cosyp = (1/6) { (ry/x)[R1°< 0 3 -< 0
o
uﬁo 0 0
(4.21)
and introducing the above in equation (4.7) we get
vy 1
p cossyp = (1/t) 0% - (o /e AR %, ).
1 To
M5, 0
(4.22)
Inserting (4.11) into (4.22) we arrive at
-\Jl
u, cosd, p = O [RIR AR, - (xo /)% b,
1 0
Uh
(4.23)

Finally, replacing above the value of 21 from our
basic equation (3.9) we get
Vi
pulcosal = (ru/rl){R]Rf 1R + g Ty}
udl
(4.24)
This expression will rigorously give the
components of proper motion at epoch of place t;, with
respect to the new (X,Y,z)T inertial coordinate frame

1
at epoch of orientation T, as a function of known
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gquantities at the epoch of place t; and epoch of
orientation 1, . Equation (4.24) is a different form
of (4.7) and as before the values (e, ,8;) should be
computed from equation (4.9). Notice that the appreoach
is characterized by its mathematical simplicity, based
on well known guantities discussed in previous
sections. This remedies an omission in standard
references, which either give an algorithm without
proof, or sketch derivations that from a didactic
point of view are considerably less direct and compact
than the ones presented here.

Let's turn our attention to the computation of
proper motion of a star at epoch t, from its positions
(with respect to the same inertial frame) and
distances at epochs t, and t,.

Actually, the final relationship can be obtained
from equation (4.21) which may be written in the form

n cosbyp = (1/t)
]
uso

6 A Ffil -
Tp
(4.25)

coséy cosd, cos(a, —@, )+sing, sing,

cosé, sin(a, -a, ) » (4.26)
-siné, cosd, cos(a, ~a; )+cosd, sind,;

Simple inspection of equation (4.25) shows that

we can eliminate the distance dependence on the proper

motion components by dividing the second and third

equations by the first, leaving finally

I+v,t
u cosé, Vo
0
Hs, t[cosd, coss, cos(a, —o, )+sind, sind, ]
cosé,sin(e,;-ap)
b -
-siné,cosé,cos(a,~a, ) +cosdysind,

(4.27)
Notice that this is a close form for computing
the proper motion components at t, and is dependent
only on the positions of the star at t; and t;, and the
radial velocity of the star at t, (recall that vy=R/xg
where 1, can now be equal teo 1). See also [Eichhorn,
1982: equation (38)]. It should be pointed out here
that the two components of proper motion in equation
(4.27) after multiplying by t reduce to the standard
coordinates (E,n) [e.g., Bomford, 1980, p.549; Green,
1985, p.321] when v,=0.

Finally an alternative equation to (4.7) or
{4.24) completely independent of precession and
nutation will be discussed. It 1is clear by simple
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inspection of Fig. 3 that the rotation matrix [&}
given by (4.8) can be replaced by

(R = R, (=0, )R, (0)R, (W) ] (4.28)
where tlvi-%‘l-t}!i, i=0,1. To prove this analytically
(even when [N][P]#I), it will be sufficient to show

that [Ra] satisfies equation (4.11). If this is so,

then we have I Vg
- > >
[#lm = Iﬂa]m for any vector m =< p cosdy p.
o
Pan
By choosing three such vectors, linearly independent,

. o B
so that the inverse of the matrix [m;? m,!

_)
m, ] exists, it follows
[J?]'[Ra]-

Upon expansion, the first column of [Ra]t is

(4.29)

found not to depend on ¥;. Since [Ra] is required to

satisfy (4.11), (4.12) becomes

cosd I+ty,
31 o= § sinosingg p = (rp/r;)q tu, cosd, o. (4.30)
o
singcosy, tu,
o

These equations when solved for sing, cosg, sinl,,
cosy,, give equations (3.6), (3.7), (2.9) and (2.10),
respectively, thus confirming the identity of ¢ and Y,
with the angles previously so labeled. Incidentally,
notice that (4.30) into (3.3) gives equation (3.13).
After substituting from (2.9), (I2.1D) for sin®, and
cosp, in (4.28), then the resulting IRa] inteo (4.7),
this equation becomes

v, - Vo

}Lulcosﬁl - (r,_.,-"rl)Rl(—IJ:ll)Ra (o) < 1y (4.31)

Hs, 0
Equation (4.31) may have practical advantages in some
astrometric applications where it is possible to
measure more precisely the angles El and ¢ than the
coordinates (01,81)11.
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